Generalized Monotone Schemes , Discrete Paths of Extrema , and Discrete Entropy

نویسنده

  • PHILIPPE G. LEFLOCH
چکیده

Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, diierenceschemes, called generalized monotone schemes. Convergence toward the entropy solution is proven via a new technique of proof, assuming that the initial data has a nite number of extremum values only, and the ux-function is strictly convex. We deene discrete paths of extrema by tracking local extremum values in the approximate solution. In the course of the analysis we establish the pointwise convergence of the trace of the solution along a path of extremum. As a corollary, we obtain a proof of convergence for a MUSCL-type scheme that is second order accurate away from sonic points and extrema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions

Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monoto...

متن کامل

ar X iv : 0 71 1 . 04 06 v 1 [ m at h . N A ] 2 N ov 2 00 7 GENERALIZED MONOTONE SCHEMES , DISCRETE PATHS OF EXTREMA , AND DISCRETE ENTROPY CONDITIONS

Solutions to conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monoto...

متن کامل

On discrete a-unimodal and a-monotone distributions

Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A new conforming mesh generator for three-dimensional discrete fracture networks

Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999